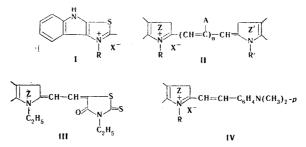
P. I. Abramenko and T. K. Ponomareva

UDC 547.759.3'789.3:668.8:543.422.6

New polymethine dyes with an indolo[3,2-d]thiazole residue are described, and their spectral properties are discussed. Replacement of the vinylene group in the naphtho[1,2-d]thiazole residue by an NH group leads to a considerably greater bathochromic shift of the absorption maximum of carbo- and merocyanines as compared with replacement by a sulfur atom. The basicity of the indolo[3,2-d]thiazole residue is higher than the basicity of the naphtho[1,2-d]-thiazole and thionaphtheno[3,2-d]thiazole residues.

Naphthothiazole and thionaphthenothiazole derivatives that are carbocyanine dyes are effective spectral sensitizers of silver halide materials [1-3].


We have synthesized various classes of polymethine dyes (II-IV) with a new heterocyclic base residue – indolo[3,2-d]thiazole – in order to study their color and investigate their photographic properties.

The positions of the absorption maxima of the synthesized carbo- and merocyanines and, for comparison, the corresponding benzothiazole, naphtho[1,2-d]thiazole, and thionaphtheno[3,2-d]thiazole derivatives, as well as the hypsochromic shifts for unsymmetrical carbocyanines and the basicities (A), measured for the ethylates of symmetrical carbocyanines, are presented in Table 1.

The positions of the absorption maxima of p-dimethylaminostyryl dyes that are derivatives of the synthesized base, benzothiazole, and naphtho[1,2-d]thiazole are presented in Table 2 along with the calculated hypsochromic shifts.

The data in Table 1 demonstrate that all of the carbocyanines and merocyanines derived from indolo-[3,2-d]thiazole are more deeply colored than the corresponding naphtho[1,2-d]thiazole and thionaphtheno-[3,2-d]thiazole derivatives (by 35 and 30 nm, respectively, in the case of symmetrical carbocyanines).

Thus replacement of the vinylene group by NH leads to a considerably greater bathochromic shift of the absorption maxima of carbo- and merocyanines as compared with replacement by a sulfur atom; this can probably be explained by the difference in the degree of conjugation with the primary chromophore of the  $\pi$  electrons of the indole ring as compared with the benzene and thiophene rings (in the case of dyes with a thionaphtheno[3,2-d]thiazole residue).



Z is an indolo[3,2-d]thiazole residue, Z' is an indolo[3,2-d]thiazole, benzoxazole, benzothiazole, benzoselenazole, napththothiazole, or a derivative residue, R and R' are alkyl or sulfoalkyl groups, A = H or alkyl, n = 0 or 1, and X is an acid residue.

All-Union State Scientific-Research and Design Institute of the Photographic-Chemical Industry, Moscow. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1606-1610, December, 1972. Original article submitted October 18, 1971.

© 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

| Com-  | Z in formula II                                  | Z' in formula II                            | $\lambda_{\max,\min}$ | Hypso-<br>chromic |                                | pK <sub>a</sub> |
|-------|--------------------------------------------------|---------------------------------------------|-----------------------|-------------------|--------------------------------|-----------------|
| pound | $(R=R'=C_2H_5, I_2)$                             | (in meth-<br>anol                           | shift*,<br>nm         | A†                | **`a                           |                 |
| IV    | Benzothiazole<br>Indolo[3,2-d]thi-<br>azole      | Benzothiazole<br>Indolo[3,2-d]-<br>thiazole | 558<br>632            |                   | 2,84<br>4,1 · 10 <sup>-2</sup> | -0,66<br>1,79   |
|       | Naphtho[1,2-d]-<br>thiazole                      | Naphtho[1,2-d]-<br>thiazole                 | 597 <sup>5</sup>      |                   | 1,154                          | -0.04           |
|       | Thionaphtheno[3, 2-d]thiazole                    | Thionaphtheno[3, 2-d]thiazole               | 6026                  |                   | 3,5 · 10-1                     |                 |
| VI    | Indolo[3,2-d]thi-<br>azole                       | Benzothiazole                               | 587                   | 8,0               |                                |                 |
|       | Thionaphteno[3, 2-d]thiazole                     | Benzothiazole                               | 5806                  | 0                 |                                |                 |
| VII   | Indolo[3,2-d]thi-<br>azole                       | Naphtho[1,2-d]-<br>thiazole                 | 607                   | 7,5               |                                |                 |
|       | Thionaphtheno[3,2<br>2-d]thiazole                | Naphtho[1,2-d]-<br>thiazole                 | 6026                  | 2,5               |                                |                 |
| VIII  | Indolo[3,2-d]thi-<br>azole                       | Benzoxazole                                 | 550                   | 8,5               |                                |                 |
|       | Naphtho[1,2-d]-<br>thiazole                      | Benzoxazole                                 | 542                   | 1,0               |                                |                 |
| IX    | Indolo[3,2-d]thi-<br>azole                       | Benzoselenazole                             | 583                   | 19,0              |                                |                 |
|       | Z in :                                           |                                             |                       |                   |                                |                 |
| x     | Indolo[3,2-d]t<br>Naphtho[1,2-d<br>Thionaphthenc | 576<br>542 <sup>7</sup><br>553 <sup>3</sup> | 11,0<br>26,5<br>19    |                   |                                |                 |

TABLE 1. Characteristics of Carbo- and Merocyanines

\*The hypsochromic shifts are the deviations of the absorption maxima from the arithmetic mean values calculated (in the case of unsymmetrical carbocyanines) from the absorption maxima of the corresponding symmetrical dyes with indolo[3,2-d]thiazole and benzoselenazole ( $\lambda_{max}$ 572 nm) [9], benzothiazole, naphtho[1,2-d]thiazole or benzoxazole ( $\lambda_{max}$ 485 nm) [10] residues, or, in the case of dimethylidynemerocyanines, from the absorption maxima of the corresponding symmetrical carbocyanines and monomethylidyneoxanine – a derivative of 3-ethylrhodanine ( $\lambda_{max}$  542 nm).

† The A value is the molar concentration of hydrochloric acid that induces conversion of the carbocyanines  $(1 \cdot 10^5 \text{ M solution in } 57\%$  ethanol) to the diacid salt [4,8].

TABLE 2. Characteristics of the Styryl Dyes

| Compound | Z in formula IV ( $R = C_2H_5$ ) | $\lambda_{\max}$ , nm<br>(in ethanol) | Hypsochromic<br>shift, nm• |
|----------|----------------------------------|---------------------------------------|----------------------------|
| XI       | Benzothiazole                    | 528                                   | 56                         |
|          | Naphtho[1,2-d]thiazole           | 542                                   | 61,5                       |
|          | Indolo[3,2-d]thiazole            | 506                                   | 115                        |

\*The hypsochromic shifts are the deviations of the absorption maxima of the styryl dyes from the arithmetic mean values calculated from the absorption maxima of the corresponding symmetrical carbocyanines and Michler's blue hydrol in nitromethane ( $\lambda_{max}$  610 nm).

It is seen from a comparison of the hypsochromic shifts of unsymmetrical carbocyanines, dimethylidynemerocyanines (Table 1), and p-dimethylaminostyryl dyes (Table 2) that the basicity of the indolo-[3,2-d]thiazole residue is higher than the basicity of both the naphtho[1,2-d]thiazole and thionaphtheno-[3,2-d]thiazole residues (see also the experimental A values in Table 1).

|                                                                                 | Yield, $\eta_0$       |                       | 8 298328308450848288<br>8 298328308450848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 | Calc., %              | s                     | $\begin{smallmatrix} 12,1\\5,5\\5,5\\5,5\\6,7\\1,1,8\\1,7,3\\1,7,3\\1,7,3\\1,7,1\\1,7,3\\1,7,1\\1,7,1\\1,7,3\\1,7,1\\1,7,3\\1,7,1\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,3\\1,7,1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                 |                       | I                     | 223<br>223<br>221,9<br>221,9<br>24,7<br>24,7<br>24,7<br>24,7<br>24,7<br>24,7<br>24,7<br>24,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                 |                       | H                     | 4,4,0,4,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                 |                       | 0                     | 57,600,000<br>57,75<br>57,600,0<br>57,600,0<br>57,600,0<br>57,600,0<br>57,600,0<br>57,600,0<br>57,600,0<br>57,600,0<br>57,600,0<br>57,600,0<br>57,600,0<br>57,600,0<br>57,600,0<br>57,600,0<br>57,600,0<br>57,600,0<br>57,600,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,0<br>57,700,000,000,000,000,000,000,000,000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                 | Found, 7/0            | s                     | 12.0<br>56.2<br>11.7<br>11.7<br>11.7<br>11.7<br>11.7<br>11.7<br>11.7<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                 |                       | г                     | 2233<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,05<br>24,0500000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                     |
|                                                                                 |                       | н                     | 44.64.99.99.49.99.49.90<br>1.67000-000,40000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                 |                       | υ                     | 51,8<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,5<br>55,7<br>55,5<br>55,5<br>55,5<br>55,5<br>55,5<br>55,5<br>55,5<br>55,5<br>55,7<br>55,5<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>55,7<br>5 |
|                                                                                 | Empirical             | Iormula               | C <sub>38</sub> H <sub>28</sub> IN <sub>3</sub> S <sub>2</sub><br>C <sub>28</sub> H <sub>28</sub> IN <sub>3</sub> OS<br>C <sub>28</sub> H <sub>28</sub> IN <sub>3</sub> OS<br>C <sub>27</sub> H <sub>28</sub> IN <sub>3</sub> SSe<br>C <sub>27</sub> H <sub>28</sub> N <sub>3</sub> ON <sub>3</sub> SS<br>C <sub>27</sub> H <sub>28</sub> N <sub>3</sub> O <sub>4</sub> S <sub>3</sub><br>C <sub>27</sub> H <sub>28</sub> N <sub>3</sub> O <sub>4</sub> S <sub>3</sub><br>C <sub>27</sub> H <sub>28</sub> N <sub>3</sub> O <sub>4</sub> S <sub>3</sub><br>C <sub>26</sub> H <sub>31</sub> N <sub>3</sub> O <sub>3</sub> S <sub>3</sub><br>C <sub>26</sub> H <sub>31</sub> N <sub>3</sub> O <sub>3</sub> S <sub>3</sub><br>C <sub>26</sub> H <sub>21</sub> N <sub>3</sub> O <sub>3</sub> S <sub>3</sub> Se<br>C <sub>28</sub> H <sub>46</sub> N <sub>4</sub> O7S <sub>4</sub><br>C <sub>37</sub> H <sub>46</sub> N <sub>4</sub> O <sub>5</sub> S <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CH=CR'CH                                                                        | ax,<br>(from<br>(from | etha<br>mn<br>mn<br>λ | 586<br>551<br>551<br>586<br>588<br>588<br>588<br>588<br>571<br>572<br>588<br>571<br>573<br>573<br>573<br>573<br>573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>H | Mp, °C                |                       | 1 224.4 Å   1 221222 Å   1 221222 Å   1 225226 Å   1 225226 Å   1 225226 Å   1 225226 Å   1 281232 Å   1 225226 Å   1 281232 Å   1 285226 Å   1 285228 Å   1 285238 Å   1 296238 Å   1 296238 Å   1 296238 Å   1 296238 Å   1 236238 Å   1 236238 Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                 | х<br>                 |                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                 | R/"                   |                       | H<br>H<br>H<br>H<br>F<br>F-DEnzo<br>5-OCH <sub>3</sub><br>5-OCH <sub>3</sub><br>5-OCH <sub>3</sub><br>4,5-Benzo<br>5,6-Dimethyl<br>F<br>H<br>5-OCH <sub>3</sub><br>4,5-Benzo<br>5,6-Dimethyl<br>F<br>A<br>5-OCH <sub>3</sub><br>4,5-Benzo<br>5,6-Dimethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                 | R"                    |                       | C2H5<br>C2H5<br>C2H5<br>C2H5<br>C2H5<br>C2H5<br>C2H5<br>C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                 | Ř                     |                       | ਸ਼ੱਸ਼ੱਸ਼ੰਸ਼ੱਸ਼ੱਸ਼ੱਸ਼ੱਸ਼<br>ਸ਼ੁਸ਼ਸ਼ਹੋਹਹੋਹਹੋਹਹੋਹੋਹੋਹੋਹੋਹੋਹੋਹੋਹੋਹੋਹੋਹੋਹੋਹ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                 | æ                     |                       | C2H5<br>C2H5<br>C2H5<br>C2H5<br>C2H5<br>C2H5<br>C2H5<br>C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                 | Comp.                 | •                     | L L L L L L L L L L L L L L L L L L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

<sup>a</sup>Dark violet prisms. <sup>b</sup>Violet prisms, <sup>c</sup>Analysis for bromine, <sup>d</sup>Analysis for nitrogen. <sup>e</sup>Dark green prisms, <sup>f</sup>Violet plates. <sup>g</sup>With decomposition,

TABLE 3

## EXPERIMENTAL

 $\frac{2-\text{Methylindolo}[3,2-d]\text{thiazole.}}{\text{mp }242-243^{\circ}\text{ by heating }2-\text{hydroxy-3-acetamidoindole with phosphorus pentasulfide in xylene [11].} UV spectrum (in ethanol): <math>\lambda_{\text{max}}$ , nm ( $\epsilon \cdot 10^{-4}$ ): 229 (6.75), 278 (2.43).

 $\frac{3-(\gamma-\text{Sulfopropyl})-1'-\text{ethyl-6'-methylindolo[3,2-d]thiazoloquino-2'-monomethylidynecyanine Betaine}{(XII).} This compound was obtained in 78% yield by heating 0.3 g (0.001 mole) of 2-methyl-3-(\gamma-sulfopropyl)-indolo[3,2-d]thiazolium betaine with 0.25 g (0.001 mole) of 1-ethyl-6-methylquinoline-2-sulfo betaine in 15 ml of anhydrous ethanol for 60 min on a boiling-water bath in the presence of triethylamine. The dark-red prisms (from ethanol) melted above 300° and had <math>\lambda_{max}$  522 nm (in ethanol). Found,%: C 62.6; H 5.2; N 8.7; S 13.4. C<sub>25</sub>H<sub>25</sub>N<sub>3</sub>O<sub>3</sub>S<sub>2</sub>. Calculated,%: C 62.6; H 5.2; N 8.7; S 13.4.

3,3'-Diethylindolo[3,2-d]thiazolocarbocyanine Iodide (V). This compound was obtained in 16% yield by heating 0.68 g (0.002 mole) of 2-methylindolo[3,2-d]thiazole ethiodide with 24 g of ethyl orthoformate in 100 ml of acetic anhydride at 130-135° for 10 min. The dark blue prisms (from ethanol) had mp 243-244°. Found,%: C 52.5; H 3.9; S 11.2; I 22.2.  $C_{25}H_{23}IN_4S_2$ . Calculated,%: C 52.6; H 4.0; S 11.2; I 22.3.

Unsymmetrical Chain-Unsubstituted Carbocyanines (VI, VII, VIII, and IX). These dyes were synthesized by heating 0.34 g (0.001 mole) of 2-methylindolo[3,2-d]thiazole ethiodide with an equimolar amount of  $2-(\beta$ -acetanilidovinyl)-substituted benzothiazole, naphtho[1,2-d]thiazole, benzoxazole, or benzoselenazole ethiodides, respectively, at 100-105° for 15 min in 10 ml of pyridine in the presence of triethylamine. To isolate the dyes, ether was added to the cooled reaction mass, and the resulting precipitate or resinous mass was dissolved by heating in ethanol. The solution was treated with 10% aqueous potassium iodide solution. The dyes were purified by recrystallization from ethanol (Table 3).

Mesoalkyl-Substituted Unsymmetrical Carbocyanines (XIII-XX, XXII, and XXIII). These dyes were synthesized by heating 0.001 mole of 2-methylindolo[3,2-d]thiazole ethiodide or  $\gamma$ -sulfopropylbetaine with 0.001 mole of the ethylmethosulfates of 2-( $\beta$ -methylmercaptobutenyl) derivatives of naphtho[1,2-d]thiazole, 5-methoxybenzothiazole, or benzoselenazole in 10 ml of anhydrous ethanol for 2 h on a boiling-water bath in the presence of triethylamine. To isolate the bromides of the 3,3'-diethylcarbocyanines (XIII, XVI, and XVIII), ether was added to the cooled reaction mass, and the precipitate was dissolved in hot ethanol. The solution was treated with 10% potassium bromide solution, and the dye was recrystallized from alcohol (Table 3). To isolate sulfobetaines XIV, XV, XVII, and XIX-XXIII, the reaction mixture was cooled, and the dye was removed by filtration, washed with anhydrous ethanol, and purified by recrystallization from anhydrous ethanol (Table 3).

 $\frac{3-\text{Ethyl-5-[3'-ethylindolo[3,2-d]thiazolinylidene-2'-ethylidene[thiazolidine-2-thion-4-one (X). This compound was obtained in 31% yield by heating a mixture of 0.34 g (0.001 mole) of 2-methylindolo[3,2-d]-thiazole ethiodide, 0.30 g (0.001 mole) of 3-ethyl-5-(acetanilidomethylene)thiazolidine-2-thion-4-one, 10 ml of anhydrous ethanol, and 0.2 g (0.002 mole) of triethylamine on a boiling-water bath for 1 h. The dark violet plates melted above 300° (from anhydrous ethanol). Found,%: C 55.6; H 4.25; N 10.8; S 24.8. C<sub>18</sub>H<sub>17</sub>NOS<sub>3</sub>. Calculated,%: C 55.8; H 4.4; N 10.8; S 24.8.$ 

<u>2-(p-Dimethylaminostyryl)indolo[3,2-d]thiazole Ethobromide (XI)</u>. This compound was synthesized in 35% yield by heating 0.34 g (0.001 mole) of 2-methylindolo[3,2-d]thiazole ethiodide with 0.22 g (0.0014 mole) of p-dimethylaminobenzaldehyde in 10 ml of anhydrous ethanol for 1 h on a boiling-water bath in the presence of piperidine. The dark red prisms (from ethanol) had mp 216-217°. Found, %: C 58.8; H 5.0; Br 18.5.  $C_{21}H_{22}BrN_3S$ . Calculated, %: C 58.9; H 5.1; Br 18.6.

## LITERATURE CITED

- 1. N. I. Fisher and F. M. Hamer, J. Chem. Soc., 2502 (1930).
- 2. B. Beilenson and F. M. Hamer, J. Chem. Soc., 143 (1939).
- 3. Z.I. Moskalenko, Dissertation [in Russian], Moscow (1965).
- 4. A. I. Kiprianov, S. G. Fridman, and L. S. Pupko, Sbornik Nauchn. Rabot IOKh Akad. Nauk Ukr SSR, 13, 44 (1947).
- 5. F. M. Hamer, J. Chem. Soc., 2598 (1929).
- 6. Z.I. Miroshnichenko and M.A. Al'perovich, Zh. Obshch. Khim., 34, 247 (1964).
- 7. M. V. Deichmeister, Z. P. Sytnik, and É. B. Lifshits, Zh. Obshch. Khim., 22, 167 (1952).
- 8. N. S. Spasokukotskii and E. S. Kozlova, Trudy NIKFI, 40, 70 (1960).
- 9. N. I. Fisher and F. M. Hamer, Proc. Roy. Soc. (London), 154A, 703 (1936).
- 10. M. V. Deichmeister, I. I. Levkoev, and É. B. Lifshits, Zh. Obshch. Khim., 23, 1529 (1953).
- 11. P.I. Abramenko, Zh. Vsesoyuzn, Khim. Obshchestva, 16, 231 (1971).